1,551 research outputs found

    Unconditional security of coherent-state quantum key distribution with strong phase-reference pulse

    Full text link
    We prove the unconditional security of a quantum key distribution protocol in which bit values are encoded in the phase of a weak coherent-state pulse relative to a strong reference pulse. In contrast to implementations in which a weak pulse is used as a substitute for a single-photon source, the achievable key rate is found to decrease only linearly with the transmission of the channel.Comment: 4 pages, 3 figure

    Unconditional security at a low cost

    Get PDF
    By simulating four quantum key distribution (QKD) experiments and analyzing one decoy-state QKD experiment, we compare two data post-processing schemes based on security against individual attack by L\"{u}tkenhaus, and unconditional security analysis by Gottesman-Lo-L\"{u}tkenhaus-Preskill. Our results show that these two schemes yield close performances. Since the Holy Grail of QKD is its unconditional security, we conclude that one is better off considering unconditional security, rather than restricting to individual attacks.Comment: Accepted by International Conference on Quantum Foundation and Technology: Frontier and Future 2006 (ICQFT'06

    Heralded qubit amplifiers for practical device-independent quantum key distribution

    Full text link
    Device-independent quantum key distribution does not need a precise quantum mechanical model of employed devices to guarantee security. Despite of its beauty, it is still a very challenging experimental task. We compare a recent proposal by Gisin et al. [Phys. Rev. Lett. 105, 070501 (2010)] to close the detection loophole problem with that of a simpler quantum relay based on entanglement swapping with linear optics. Our full-mode analysis for both schemes confirms that, in contrast to recent beliefs, the second scheme can indeed provide a positive key rate which is even considerably higher than that of the first alternative. The resulting key rates and required detection efficiencies of approx. 95% for both schemes, however, strongly depend on the underlying security proof.Comment: 5 pages, 3 figure

    Security of EPR-based Quantum Cryptography against Incoherent Symmetric Attacks

    Get PDF
    We investigate a new strategy for incoherent eavesdropping in Ekert's entanglement based quantum key distribution protocol. We show that under certain assumptions of symmetry the effectiveness of this strategy reduces to that of the original single qubit protocol of Bennett and Brassard

    Security of differential phase shift quantum key distribution against individual attacks

    Full text link
    We derive a proof of security for the Differential Phase Shift Quantum Key Distribution (DPSQKD) protocol under the assumption that Eve is restricted to individual attacks. The security proof is derived by bounding the average collision probability, which leads directly to a bound on Eve's mutual information on the final key. The security proof applies to realistic sources based on pulsed coherent light. We then compare individual attacks to sequential attacks and show that individual attacks are more powerful

    Effects of detector efficiency mismatch on security of quantum cryptosystems

    Full text link
    We suggest a type of attack on quantum cryptosystems that exploits variations in detector efficiency as a function of a control parameter accessible to an eavesdropper. With gated single-photon detectors, this control parameter can be the timing of the incoming pulse. When the eavesdropper sends short pulses using the appropriate timing so that the two gated detectors in Bob's setup have different efficiencies, the security of quantum key distribution can be compromised. Specifically, we show for the Bennett-Brassard 1984 (BB84) protocol that if the efficiency mismatch between 0 and 1 detectors for some value of the control parameter gets large enough (roughly 15:1 or larger), Eve can construct a successful faked-states attack causing a quantum bit error rate lower than 11%. We also derive a general security bound as a function of the detector sensitivity mismatch for the BB84 protocol. Experimental data for two different detectors are presented, and protection measures against this attack are discussed.Comment: v3: identical to the journal version. However, after publication we have discovered that Eq. 11 is incorrect: the available bit rate after privacy amplification is reduced even in the case (QBER)=0 [see Quant. Inf. Comp. 7, 73 (2007)

    Coin Tossing is Strictly Weaker Than Bit Commitment

    Full text link
    We define cryptographic assumptions applicable to two mistrustful parties who each control two or more separate secure sites between which special relativity guarantees a time lapse in communication. We show that, under these assumptions, unconditionally secure coin tossing can be carried out by exchanges of classical information. We show also, following Mayers, Lo and Chau, that unconditionally secure bit commitment cannot be carried out by finitely many exchanges of classical or quantum information. Finally we show that, under standard cryptographic assumptions, coin tossing is strictly weaker than bit commitment. That is, no secure classical or quantum bit commitment protocol can be built from a finite number of invocations of a secure coin tossing black box together with finitely many additional information exchanges.Comment: Final version; to appear in Phys. Rev. Let

    Efficient Heralding of Photonic Qubits with Apllications to Device Independent Quantum Key Distribution

    Full text link
    We present an efficient way of heralding photonic qubit signals using linear optics devices. First we show that one can obtain asymptotically perfect heralding and unit success probability with growing resources. Second, we show that even using finite resources, we can improve qualitatively and quantitatively over earlier heralding results. In the latte r scenario, we can obtain perfect heralded photonic qubits while maintaining a finite success probability. We demonstrate the advantage of our heralding scheme by predicting key rates for device independent quantum key distribution, taking imperfections of sources and detectors into account

    Unconditionally secure quantum bit commitment is impossible

    Get PDF
    The claim of quantum cryptography has always been that it can provide protocols that are unconditionally secure, that is, for which the security does not depend on any restriction on the time, space or technology available to the cheaters. We show that this claim does not hold for any quantum bit commitment protocol. Since many cryptographic tasks use bit commitment as a basic primitive, this result implies a severe setback for quantum cryptography. The model used encompasses all reasonable implementations of quantum bit commitment protocols in which the participants have not met before, including those that make use of the theory of special relativity.Comment: 4 pages, revtex. Journal version replacing the version published in the proceedings of PhysComp96. This is a significantly improved version which emphasis the generality of the resul

    His story/her story: A dialogue about including men and masculinities in the women’s studies curriculum

    Get PDF
    The article discusses the issue of inclusion of men and masculinities in the Women\u27s Studies curriculum. Women\u27s Studies programs were started to compensate for the male domination in the academics. Women\u27s Studies presented a platform where scholarship for women was produced and taken seriously, female students and faculty could find their say or voice, and theoretical investigations required for the advancement of the aims of the women\u27s movement could take place. If the academy as a whole does not sufficiently integrate Women\u27s Studies into the curriculum, integrating Men\u27s Studies into Women\u27s Studies might end up further marginalizing Women\u27s Studies by decreasing the number of classroom hours students spend engaging women\u27s lives and feminist scholarship. Such an integration would presents an another form of male privilege, with men manipulating their way into the only branch of scholarship that has consistently focused on women. On a ground level, feminist scholars are apprehensive that a move from a Women\u27s Studies program to a Gender Studies program will reduce the political aspect of women\u27s programs
    • …
    corecore